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Cooperativity and resonances in periodically driven spin-boson systems
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We present an analytical recursive formulation for the quantum transport in symmetric two-level systems
under the influence of both dissipation and periodic driving. The rate-matching condition for quantum stochas-
tic resonance despite its different appearance is found to be physically the same as that in the classical case.
Analyzed are also the Rabi resonance and its implication to quantum stochastic resonance. We demonstrate
that no matter how weak the driving field is, transport can involve about 70% population in the vicinities of the
third-harmonic as well as the fundamental-harmonic Rabi resonance. Recovered is also an adiabatic passage
condition in which the transport carries a nearly 100% population in the low frequency and strong driving
limit.

PACS numbgs): 05.30—-d, 05.40--a, 42.65.Ky, 73.50.Td

Cooperativity plays an important role in nonlinear sci- influence of both noise and periodic drivifg—6]. The total
ence. Stochastic resonan@R) is a kind of cooperative ef- Hamiltonian assumes
fect in which the response of physical systems to periodic . ~
driving is maximized at a certain level of noise. Since its H(t)=—(fil2){coy+[bcosQt+f(t)]oz}. (1)
discovery in 1981[1], SR has been recognized as one of . .
general nonlinear phenomena occurring in a variety of fieldélere, o, and o, are the Pauli spin operators.denotes the
of science(for recent reviews, see, e.g2] and the refer- coupling matrix element of the bare TLB,the strength of
ences therejn The canonical model for classical SR is de- periodic driving, and() the driving frequency. In Eq(1),
scribed by a periodically driven bistable state system embedi(t) represents the quantum Markovian random force whose
ded in a fluctuating mediuntor noise [2]. The transport correlation function is characterized by the noise-level pa-
amplitude maximum is found at the noise level such that itgametery. In this case, Eq(1) leads to the following Bloch
induced transport rate matches with that induced by the pesquations:
riodic driving [2]. This is thesynchronization principleor

the rate-matching conditiorof SR. In the case of classical S(t)= = Si(t) = S(t)]+bcog Q)S(1),  (2a)
transport, it is givei2] by r¢= /2. Here r« is the Kramers

rate for barrier crossing, whil€ is the driving frequency. Sy(t)= —bcogQt)S,(t) — ¥Sy(t) +cS[(t), (2b)
The factor 1/2 accounts for the periodically driven transport

occurring in both forward and backward directions. S,(t)= —cS(1). (20)

The role of SR in quantum transport systems, such as
nonlinear optics and semiconductor devices, has been a subere, S,(t)=Tr[a,p(t)]; with r=x,y,z are the expectation
ject of many recent studig2—-6]. The most important fea- values of three Pauli spin-operators, and
ture of quantum SR that differs from its classical counterpart

appears in the vicinity of resonant driving regid6]. It has S,(t)=(clo)tani Ao, /(2kgT)], (33
been shown theoreticalljs] that no matter how weak the
driving field is, the fundamental-harmonic transport ampli- w;=1/cZ+bZcod(Ot). (3b)

tude that involves about 70% of population can occur at the
resonant driving condition with appropriate noise levels. InNote thatw, is theinstantaneous transition frequenoy the
this work we shall demonstrate that a large transport amp“@eriodically driven TLS, whileS,(t) = Tr[ ap(t)] with p(t)

tude might be achievable not only in the fundamental buiyeneting the instantaneous Boltzmann density matrix at tem-

also the third-order resonance region. It thus implies the pos- =< _ o _ = )
sibility of an efficient way to frequency tripling by using a peratureT. As §,=0 ands,=b cos{})S,/c, the Bloch equa

L ) . . .~ tions [Eqg. (2)] do not contain them explicitly. In the high
weak driving field. This paper also provides an analytical . —
expression to the study of quantum transport in a model dis€mperature limit okgT>%Aw;, we haves,(t)~c/(2kgT)

sipative two-level systerfiTLS) driven by arbitrary periodi- <1 In this case Eq(2) reduces to the Bloch equations used
cal fields at arbitrary temperatures. by Pareelet al.[6] in their study of quantum SR in the weak

The simplest model for quantum SR is a periodicallyd“Vi”g (b<<c) regime. However, it is crucial especially in

driven spin-boson system, or a symmetric TLS under thdh€ low temperaturekgT<fiw;) and strong driving i§>c)
regime to have thenstantaneous field-dressed Boltzmann

valueof§((t) in Eq. (2). If it were replaced by the field-free
* Author to whom correspondence should be addressed. Electronialue of {9, Eq. (2) would lead to the unphysical result of
address: yyan@ust.hk negative population.
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In this work, we shall be interested in the stationary solu-

tion to Eq.(2), which according to the Floquet theorem is of
the form: S(t)=13r,e ", Here, ne(—=,»), and
r_,=ry, with r,=x,,y,, or z,. The stationary dynamics
of Eg. (2) can then be studied in terms ¢éf,} via their

coupled linear equations. To that end, we shall also decom-

pose Eq.3a) asS,(t)=Is,e” "™ . Obviously, Syms1=0,

ands,=s_,=s; . These real parameters constitute the con-

stant vectofcf. Eq. (40)] in the linear equation for the sta-
tionary harmonic amplitude$r,,;n=0}. The symmetry of
the TLS[Eq. (1)] leads toXsmi1=Yom=2Zom=0, and the
remaining linear equation involves effectively only a sym-
metric tridiagonal matrix. The stationary harmonic ampli-
tudes can thus be formulated analytically. To simplify the
notation, we denoter,, and 8,, as the diagonal and the off-

diagonal elements of the symmetric tridiagonal matrix, andof

{vm} as the constant vector. We have

c? _
A= |(2mT)Q +i(2m+1)Q—y+ Byt Bm-1,
(49)
b%/(4y)
Pn=iomi20iy—1" (4b)
S S
vm=b 2m+2 2m (4C)

T-i2m+2)Qly  1-i2m)Qly|’
Let us present the final analytical formulation for the sta-
tionary harmonic transport amplitudes,,, 1, or

M
SP=[pyy(t)—paalt)1s= RemE:O Zymy 1€ BMEDAL (5)

Here,M is a sufficiently large truncation number such that
Eq. (5) converges. We shall also sgf,=0. The final ana-
lytical solution is expressed as an inward-outward-recursio
formulation as follows. We first construct inward-recursively
(m=M, ...,0) two sets of auxiliary parameters:

1_‘m:‘5fm_:82m/1_‘m+1y

Ap=Wm=BmAmi D)/ T m-

(6a)
(6b)
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FIG. 1. The first-harmonic transport amplituldg| as a function
the noise levelin terms of y/b) in the vicinity of first harmonic

Rabi-resonanc@~ w. The specified value df/c=0.1 is chosen to
represent the weak driving case.

in term of y/b. The effect of driving frequenc{) will be
reported in the unit of the cyclic mean-square-root of the
dressed-TLS frequend¥Eq. (3b)],

o=(w) 2= (T b72.

We shall hereafter tern in Eqg. (8) as the effectiveRabi
frequencyof the driven TLS. It will be shown later that the
quantum SR appears dramatically in the vicinity of the

(2m+ 1)th-harmonic Rabi-resonance frequer@y: w/(2m
+1), in both the weak and the strong driving regimes.

Let us start with the stationary quantum transport and its
SR at the representative valuelwt= 0.1 for the weak driv-
ing regime. Figure 1 depicts the first-harmonic amplitude

|z4| as a function ofy/b and w/€Q in the vicinity of funda-
mental Rabi-resonant driving. Observed in this figure for the
weak driving regime al —0 K are three important features

®

s follows.

(i) SR in|z;| occurs only in the vicinity of the fundamen-
tal Rabi-resonance. We may denote the two frequencies as-
sociating with the maxima ofz;|, .o asQ . andQ_, re-

spectively. Obviously,Q,<Z<Q+, and the SR occurs
only whenQ e (Q_,Q ) [cf. Eq.(12)].
(i) |z1]o~5 exhibits a dramatic SR effect. It starts from

The stationary harmonic transport amplitudes are then evalalmost zero wheny—0 reaches at its maximurfe;|y,ax

ated outward recursively as

:Fg(Uo_ﬁoAl)+[b2/(47)](vo_/301\1)*

7
(iQ/e){|To|*~[b%(47)1%} e

Z3

. _ Am _ (Zm_ 1):8m—lz
1T 2m+1)Q/c (2m+1)T,, 2™t

(70)

Equations(4)—(7) constitute the exact stationary solution
to Eqg. (2) in the full (c,b,Q,y,T) parameter space. In the
following we shall use them in a converged manner to inves
tigate the transport dynamics &t-0 K (or more precisely
kgT<<7%ic) in both the weak and the strong driving regimes,
exemplified byb/c=0.1 andb/c=5, respectively. As the
noise is longitudina[cf. Eq. (1)], its effect will be reported

~0.7 wheny=Db/+/2, and then falls off as increases fur-
ther. The observetate-matching conditiorior the quantum
SR at the resonant driving frequency is therefore given by

Ysr= b/ \/E . 9

Note thaty amounts to the noise-induced transport rate in
the symmetric TLS in the absence of driving field. On the
other hand, the cyclic-averaged rate induced by the periodic
driving field is given byb/+/2. Thus, Eq(9) for the quantum
SR is consistent with theynchronization principleestab-
lished for classical SR2] despite the different appearances
in their rate-matching conditions.

(i) |z1| max=0.7 which is independent df in the weak
driving (b<<c) regime and appears on a parabolic curve in
the (0, vy) spacdcf. Fig. 1 and Eq(11b)]. In this case, about
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70% of population involves in the tunneling transparg
matter how weak the driving field.is

To analyze the above three important features of quantum

transport in the weak driving regime at-0 K, let us con-
sider the lowest order truncation approximatidvi €0) to
the exact formulatiofEgs.(6) and(7)]. After some elemen-
tary algebra, we obtain
z,~CFI(|F|?+Q?/2), (10
with F=(c?—Q2+iQv)/b. In deriving Eq.(10), we consid-
ered also the low temperature limit in whi&(t)~1 [cf.
Eqg. (3a]. At a finite temperature, Eq10) may include the
scaling constant ofS(t))=s,. In the high temperature
limit, this scaling constant isy~c/(2kgT) and Eg.(10)
recovers the result of Pareek al. [6]. However, the high
temperatureKgT>7 w,) leads also t¢z,|<1. The low tem-
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FIG. 2. Same as Fig. 1 but fdzs| in the vicinity of third-
harmonic Rabi resonande~ w/3.

perature is required for a large amplitude transport. In the

weak driving p<<c) regime and in the vicinity of the fun-
damental resonarfl~ w driving, Eq. (10) gives basically

bution. Figure 2 for|z;| and Fig. 1 for|z,| are very much
alike despite their difference measures in fheand y axes.

the identical numerical results as Fig. 1 obtained via the exThe three characteristic features described earlier for Fig. 1
act inward-outward-recursive formulatipigs.(6) and(7)].  are also clearly seen in Fig. 2. Compared with the fundamen-
We shall also be interested in the maximum valuézef,  tal resonance ifizy| (Fig. 1), the third-harmonic Rabi reso-
which can be achieved whdR|?=0?/2 [cf. Eq.(10]. We  nance in|zs| (Fig.2) occurs more sharply in both the

obtain for the weak drivingk{<c) regime that driving-frequency() and the noise-leve} domains.

Figure 3 plots botHzs| and|z,| as functions of driving
frequency in the vicinity of third-harmonic Rabi resonance at
the specified values of noise level and driving strength. In-
cluded is also the approximatézi| (dash ling evaluated via
the lowest-order truncation formulatiofEq. (10)]. Obvi-
ously, in the weak driving regime the third-harmonic trans-
port amplitude|z;| whose maximum value is about 0.7 can

be much larger thafz,| aroundQ = w/3. It thus leads to the

|Zl| max> 271/2(:/9:

(119

y=[b?%12—(Q—c?/0)?]¥2 (11b
In the case of resonance drivir(QZCwZ, Eq. (118 be-
comes|z;| max=0.7, while Eq.(11b) reduces to Eq(9). We
have thus recovered the featur@9 and (iii) of Fig.1 as

mentioned earlier. Equatiofillb) can further be used to *< )
quantize the featuré) of Fig. 1, i.e., the range of driving failures of not only the linear response theory but also the

frequencyQ e (Q_ ,Q.) within which the SR might occur. Iowest-c_;rder tr_uncation approximatigg. (10)] at the th_irc_JI-
In the weak driving regime, this range may be evaluated af&'monic Rabi resonancep matter how small the driving
the roots of Eq(11b) in the limit of y—0. We have strength is . ,
We shall now turn to the strongoé&c) driving regime
Q. ~cZ+b?8+bl /8. exemplified by the chosen value bfc=5. Figure 4 depicts
- the transport amplitudefz, |, |zs|, andS)¥=|p11— pod 0,
Note that|z|,~,~0.7 reaches its maximum &=Q., as functions of the driving frequency at two specified noise
while [z,|,-o~0 atO~ow. levels. Note thatz;| can exceed Icf. the upper panel of
We have thus analyzed the three important features ifrig. 4). However,S)®*<1 (cf. the bottom panglas it is re-
Fig. 1 that demonstrate clearly the cooperative effects of peguired by the positivity of population. Evidentl§,®— 1 as
riodic driving and dissipation on the stationary transport in
the TLS. The Rabi resonance is the cooperativity among the

driving frequency(l, the Rabi frequencw, and/or the driv-
ing strengtrb. In the vicinity of Rabi resonance, quantum SR
occurs[Eq. (9)] as the cooperativity between the driving
strengthb and the noise levely. That |z;|,.~~0.7 being
independent of the driving strength in the weak drivirg (
<c) regime is definitely beyond the linear response theory.
The validity of latter should also include the condition of
|F|?>Q2/2 [cf. Eq. (10)], which in the vicinity of resonant
driving corresponds tgsb/ /2.

Figure 2 depicts the most striking cooperativity in the
weak driving p<c) regime, which is in the vicinity of} FIG. 3. |z;] and|z;| in the vicinity of third-harmonic Rabi reso-
= w/3 the third-order harmonic transport amplitude can alstance() ~ w/3 in the weak driving regime, at the specified value of

achieve at its maximum value (3| ,a~0.7, N0 matter how y. The dotted line is the approximated;| via the lowest-order
weak the driving is. In this casézs| is the dominant contri-  truncation formulation Eq(10)].

(12

| yb=3x10" b/c=0.1

Amplitude

0.0
3.000 2.999

o/Q

2.998



PRE 61

21 11
®/Q

41 31
FIG. 4. The transport amplitudes as functions«@f at the

specified value ob/c=5 to represent the strong driving regime.
See text for the details.

0 —0. It implies that a 100% population transport occurs a
a result of adiabatic passage in whibk-c>(). This phe-

nomenon may be easily understood by realizing that in thi

case the region of Stark modulation; b,b), exceeds that of
tunneling transport,{ c,c). Transport occurs only in a frac-
tion of the driving period. By denotint; as the duration of
a forward or backward tunneling passage, we have(sii(
=c/b. For a given value ob/c>1, the smaller the driving
frequency(}, the longer the tunneling timg-, and the more
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complete population transport. It is also interesting to notice
that all three amplitudes in Fig.4 behave similarly. This
might result from the inward-outward recursive nature of the
formulation, Eqs(6) and(7), that correlates many harmonic
amplitudes z,,,, 1 together in the strong driving regime.
Within each of the Rabi-resonance regiofi®., 2m—1
<w/Q)<2m+1), the transport amplitude in the strong driv-
ing regime behaves similarly éz,| (Fig. 1) or|z;| (Fig. 2 in
the vicinity of its own corresponding Rabi resonance in the
weak driving regime. That is, the transport amplituéey.,
ST in the lower panel of Fig.¥shows a frequency dip
when vy is sufficiently small(solid curve$, and increases as
v increaseqgdash curveswithin a certain range. This indi-
cates that SR occurs in each of the Rabi-resonance regions.
Applying the synchronization principle, the rate-matching
condition for the strongl{/c>1) driving regime would be
y~t{1~bQ/c. However, the adiabatic passage would be-
come the dominant mechanism at the low-frequency and
strong driving regime, retaining a nearly 100% population
transport asy increases further.

In summary we have reported a systematic study based on
the analytical inward-outward recursive formulatidtys.(6)
and (7)] for the quantum transport in a periodically driven
spin-boson system. Elucidated are the stochastic resonance
S‘and Rabi resonance in both the weak and the strong driving
regimes. Demonstrated are also the possibility of a large am-
glitude third-harmonic generation operated in the weak driv-
ing regime.
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