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Cooperativity and resonances in periodically driven spin-boson systems

Feng Shuang, Chen Yang, Houyu Zhang, and YiJing Yan*
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We present an analytical recursive formulation for the quantum transport in symmetric two-level systems
under the influence of both dissipation and periodic driving. The rate-matching condition for quantum stochas-
tic resonance despite its different appearance is found to be physically the same as that in the classical case.
Analyzed are also the Rabi resonance and its implication to quantum stochastic resonance. We demonstrate
that no matter how weak the driving field is, transport can involve about 70% population in the vicinities of the
third-harmonic as well as the fundamental-harmonic Rabi resonance. Recovered is also an adiabatic passage
condition in which the transport carries a nearly 100% population in the low frequency and strong driving
limit.

PACS number~s!: 05.30.2d, 05.40.2a, 42.65.Ky, 73.50.Td
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Cooperativity plays an important role in nonlinear s
ence. Stochastic resonance~SR! is a kind of cooperative ef-
fect in which the response of physical systems to perio
driving is maximized at a certain level of noise. Since
discovery in 1981@1#, SR has been recognized as one
general nonlinear phenomena occurring in a variety of fie
of science~for recent reviews, see, e.g.,@2# and the refer-
ences therein!. The canonical model for classical SR is d
scribed by a periodically driven bistable state system emb
ded in a fluctuating medium~or noise! @2#. The transport
amplitude maximum is found at the noise level such that
induced transport rate matches with that induced by the
riodic driving @2#. This is thesynchronization principleor
the rate-matching conditionof SR. In the case of classica
transport, it is given@2# by r K5V/2. Here,r K is the Kramers
rate for barrier crossing, whileV is the driving frequency.
The factor 1/2 accounts for the periodically driven transp
occurring in both forward and backward directions.

The role of SR in quantum transport systems, such
nonlinear optics and semiconductor devices, has been a
ject of many recent studies@2–6#. The most important fea
ture of quantum SR that differs from its classical counterp
appears in the vicinity of resonant driving region@5,6#. It has
been shown theoretically@5# that no matter how weak th
driving field is, the fundamental-harmonic transport amp
tude that involves about 70% of population can occur at
resonant driving condition with appropriate noise levels.
this work we shall demonstrate that a large transport am
tude might be achievable not only in the fundamental
also the third-order resonance region. It thus implies the p
sibility of an efficient way to frequency tripling by using
weak driving field. This paper also provides an analyti
expression to the study of quantum transport in a model
sipative two-level system~TLS! driven by arbitrary periodi-
cal fields at arbitrary temperatures.

The simplest model for quantum SR is a periodica
driven spin-boson system, or a symmetric TLS under
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influence of both noise and periodic driving@2–6#. The total
Hamiltonian assumes

HT~ t !52~\/2!$cŝx1@b cosVt1 f ~ t !#ŝz%. ~1!

Here, ŝx and ŝz are the Pauli spin operators.c denotes the
coupling matrix element of the bare TLS,b the strength of
periodic driving, andV the driving frequency. In Eq.~1!,
f (t) represents the quantum Markovian random force wh
correlation function is characterized by the noise-level
rameterg. In this case, Eq.~1! leads to the following Bloch
equations:

Ṡx~ t !52g@Sx~ t !2S̄x~ t !#1b cos~Vt !Sy~ t !, ~2a!

Ṡy~ t !52b cos~Vt !Sx~ t !2gSy~ t !1cSz~ t !, ~2b!

Ṡz~ t !52cSy~ t !. ~2c!

Here,Sr(t)[Tr@ŝ rr(t)#; with r 5x,y,z are the expectation
values of three Pauli spin-operators, and

S̄x~ t !5~c/v t!tanh@\v t /~2kBT!#, ~3a!

v t[Ac21b2 cos2~Vt !. ~3b!

Note thatv t is the instantaneous transition frequencyof the
periodically driven TLS, whileS̄x(t)5Tr@sxr̄(t)# with r̄(t)
denoting the instantaneous Boltzmann density matrix at t
peratureT. As S̄y50 andS̄z5b cos(Vt)S̄x /c, the Bloch equa-
tions @Eq. ~2!# do not contain them explicitly. In the high
temperature limit ofkBT@\v t , we haveS̄x(t)'c/(2kBT)
!1. In this case Eq.~2! reduces to the Bloch equations us
by Pareeket al. @6# in their study of quantum SR in the wea
driving (b!c) regime. However, it is crucial especially i
the low temperature (kBT,\v t) and strong driving (b.c)
regime to have theinstantaneous field-dressed Boltzma

valueof S̄x(t) in Eq. ~2!. If it were replaced by the field-free
value ofSx

eq, Eq. ~2! would lead to the unphysical result o
negative population.
ic
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In this work, we shall be interested in the stationary so
tion to Eq.~2!, which according to the Floquet theorem is
the form: Sr

(s)(t)[ 1
2 (r ne2 inVt. Here, nP(2`,`), and

r 2n5r n* , with r n5xn ,yn , or zn . The stationary dynamics
of Eq. ~2! can then be studied in terms of$r n% via their
coupled linear equations. To that end, we shall also dec
pose Eq.~3a! as S̄x(t)[(sne2 inVt . Obviously,s2m1150,
andsn5s2n5sn* . These real parameters constitute the c
stant vector@cf. Eq. ~4c!# in the linear equation for the sta
tionary harmonic amplitudes$r n ;n>0%. The symmetry of
the TLS @Eq. ~1!# leads tox2m115y2m5z2m50, and the
remaining linear equation involves effectively only a sym
metric tridiagonal matrix. The stationary harmonic amp
tudes can thus be formulated analytically. To simplify t
notation, we denoteam andbm as the diagonal and the off
diagonal elements of the symmetric tridiagonal matrix, a
$vm% as the constant vector. We have

am[
c2

i ~2m11!V
1 i ~2m11!V2g1bm1bm21 ,

~4a!

bm[
b2/~4g!

i ~2m12!V/g21
, ~4b!

vm5bF s2m12

12 i ~2m12!V/g
1

s2m

12 i ~2m!V/gG . ~4c!

Let us present the final analytical formulation for the s
tionary harmonic transport amplitudesz2m11, or

Sz
(s)[@r11~ t !2r22~ t !#s5Re(

m50

M

z2m11e2 i (2m11)Vt. ~5!

Here, M is a sufficiently large truncation number such th
Eq. ~5! converges. We shall also setbM[0. The final ana-
lytical solution is expressed as an inward-outward-recurs
formulation as follows. We first construct inward-recursive
(m5M , . . . ,0) two sets of auxiliary parameters:

Gm5am2bm
2 /Gm11 , ~6a!

Lm5~vm2bmLm11!/Gm . ~6b!

The stationary harmonic transport amplitudes are then ev
ated outward recursively as

z15
G0* ~v02b0L1!1@b2/~4g!#~v02b0L1!*

~ iV/c!$uG0u22@b2/~4g!#2%
, ~7a!

z2m115
Lm

i ~2m11!V/c
2

~2m21!bm21

~2m11!Gm
z2m21 . ~7b!

Equations~4!–~7! constitute the exact stationary solutio
to Eq. ~2! in the full (c,b,V,g,T) parameter space. In th
following we shall use them in a converged manner to inv
tigate the transport dynamics atT→0 K ~or more precisely
kBT!\c) in both the weak and the strong driving regime
exemplified byb/c50.1 andb/c55, respectively. As the
noise is longitudinal@cf. Eq. ~1!#, its effect will be reported
-

-

-

d

-

t

n

u-

-
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in term of g/b. The effect of driving frequencyV will be
reported in the unit of the cyclic mean-square-root of t
dressed-TLS frequency@Eq. ~3b!#,

v̄[^v t
2&1/25Ac21b2/2. ~8!

We shall hereafter termv̄ in Eq. ~8! as the effectiveRabi
frequencyof the driven TLS. It will be shown later that th
quantum SR appears dramatically in the vicinity of t
(2m11)th-harmonic Rabi-resonance frequencyV5v̄/(2m
11), in both the weak and the strong driving regimes.

Let us start with the stationary quantum transport and
SR at the representative value ofb/c50.1 for the weak driv-
ing regime. Figure 1 depicts the first-harmonic amplitu
uz1u as a function ofg/b and v̄/V in the vicinity of funda-
mental Rabi-resonant driving. Observed in this figure for
weak driving regime atT→0 K are three important feature
as follows.

~i! SR in uz1u occurs only in the vicinity of the fundamen
tal Rabi-resonance. We may denote the two frequencies
sociating with the maxima ofuz1ug→0 as V1 and V2 , re-
spectively. Obviously,V2,v̄,V1 , and the SR occurs
only whenVP(V2 ,V1) @cf. Eq. ~12!#.

~ii ! uz1uV'v̄ exhibits a dramatic SR effect. It starts from
almost zero wheng→0 reaches at its maximumuz1umax

'0.7 wheng5b/A2, and then falls off asg increases fur-
ther. The observedrate-matching conditionfor the quantum
SR at the resonant driving frequency is therefore given b

gSR5b/A2. ~9!

Note thatg amounts to the noise-induced transport rate
the symmetric TLS in the absence of driving field. On t
other hand, the cyclic-averaged rate induced by the perio
driving field is given byb/A2. Thus, Eq.~9! for the quantum
SR is consistent with thesynchronization principleestab-
lished for classical SR@2# despite the different appearanc
in their rate-matching conditions.

~iii ! uz1umax'0.7 which is independent ofb in the weak
driving (b!c) regime and appears on a parabolic curve
the (V,g) space@cf. Fig. 1 and Eq.~11b!#. In this case, abou

FIG. 1. The first-harmonic transport amplitudeuz1u as a function
of the noise level~in terms ofg/b) in the vicinity of first harmonic

Rabi-resonanceV'v̄. The specified value ofb/c50.1 is chosen to
represent the weak driving case.
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70% of population involves in the tunneling transport,no
matter how weak the driving field is.

To analyze the above three important features of quan
transport in the weak driving regime atT→0 K, let us con-
sider the lowest order truncation approximation (M50) to
the exact formulation@Eqs.~6! and~7!#. After some elemen-
tary algebra, we obtain

z1'cF/~ uFu21V2/2!, ~10!

with F5(c22V21 iVg)/b. In deriving Eq.~10!, we consid-
ered also the low temperature limit in whichS̄x(t)'1 @cf.
Eq. ~3a!#. At a finite temperature, Eq.~10! may include the
scaling constant of̂ S̄x(t)&5s0. In the high temperature
limit, this scaling constant iss0'c/(2kBT) and Eq. ~10!
recovers the result of Pareeket al. @6#. However, the high
temperature (kBT@\v t) leads also touz1u!1. The low tem-
perature is required for a large amplitude transport. In
weak driving (b!c) regime and in the vicinity of the fun
damental resonantV'v̄ driving, Eq. ~10! gives basically
the identical numerical results as Fig. 1 obtained via the
act inward-outward-recursive formulation@Eqs.~6! and ~7!#.

We shall also be interested in the maximum value ofuz1u,
which can be achieved whenuFu25V2/2 @cf. Eq. ~10!#. We
obtain for the weak driving (b!c) regime that

uz1umax'221/2c/V, ~11a!

g5@b2/22~V2c2/V!2#1/2. ~11b!

In the case of resonance drivingV5c'v̄, Eq. ~11a! be-
comesuz1umax'0.7, while Eq.~11b! reduces to Eq.~9!. We
have thus recovered the features~ii ! and ~iii ! of Fig. 1 as
mentioned earlier. Equation~11b! can further be used to
quantize the feature~i! of Fig. 1, i.e., the range of driving
frequencyVP(V2 ,V1) within which the SR might occur
In the weak driving regime, this range may be evaluated
the roots of Eq.~11b! in the limit of g→0. We have

V6'Ac21b2/86b/A8. ~12!

Note that uz1ug'0'0.7 reaches its maximum atV5V6 ,
while uz1ug'0'0 at V'v̄.

We have thus analyzed the three important features
Fig. 1 that demonstrate clearly the cooperative effects of
riodic driving and dissipation on the stationary transport
the TLS. The Rabi resonance is the cooperativity among
driving frequencyV, the Rabi frequencyv̄, and/or the driv-
ing strengthb. In the vicinity of Rabi resonance, quantum S
occurs @Eq. ~9!# as the cooperativity between the drivin
strengthb and the noise levelg. That uz1umax'0.7 being
independent of the driving strength in the weak drivingb
!c) regime is definitely beyond the linear response theo
The validity of latter should also include the condition
uFu2@V2/2 @cf. Eq. ~10!#, which in the vicinity of resonant
driving corresponds tog@b/A2.

Figure 2 depicts the most striking cooperativity in t
weak driving (b!c) regime, which is in the vicinity ofV
5v̄/3 the third-order harmonic transport amplitude can a
achieve at its maximum value ofuz3umax'0.7, no matter how
weak the driving is. In this case,uz3u is the dominant contri-
m

e

x-

s

in
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e
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bution. Figure 2 foruz3u and Fig. 1 foruz1u are very much
alike despite their difference measures in theV andg axes.
The three characteristic features described earlier for Fi
are also clearly seen in Fig. 2. Compared with the fundam
tal resonance inuz1u ~Fig. 1!, the third-harmonic Rabi reso
nance in uz3u ~Fig. 2! occurs more sharply in both th
driving-frequencyV and the noise-levelg domains.

Figure 3 plots bothuz3u and uz1u as functions of driving
frequency in the vicinity of third-harmonic Rabi resonance
the specified values of noise level and driving strength.
cluded is also the approximateduz1u ~dash line! evaluated via
the lowest-order truncation formulation@Eq. ~10!#. Obvi-
ously, in the weak driving regime the third-harmonic tran
port amplitudeuz3u whose maximum value is about 0.7 ca
be much larger thanuz1u aroundV5v̄/3. It thus leads to the
failures of not only the linear response theory but also
lowest-order truncation approximation@Eq. ~10!# at the third-
harmonic Rabi resonance,no matter how small the driving
strength is.

We shall now turn to the strong (b@c) driving regime
exemplified by the chosen value ofb/c55. Figure 4 depicts
the transport amplitudes,uz1u, uz3u, andSz

max5ur112r22us
max,

as functions of the driving frequency at two specified no
levels. Note thatuz1u can exceed 1~cf. the upper panel of
Fig. 4!. However,Sz

max<1 ~cf. the bottom panel! as it is re-
quired by the positivity of population. Evidently,Sz

max→1 as

FIG. 2. Same as Fig. 1 but foruz3u in the vicinity of third-

harmonic Rabi resonanceV'v̄/3.

FIG. 3. uz1u anduz3u in the vicinity of third-harmonic Rabi reso

nanceV'v̄/3 in the weak driving regime, at the specified value
g. The dotted line is the approximateduz1u via the lowest-order
truncation formulation Eq.~10!#.
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V→0. It implies that a 100% population transport occurs
a result of adiabatic passage in whichb@c@V. This phe-
nomenon may be easily understood by realizing that in
case the region of Stark modulation, (2b,b), exceeds that of
tunneling transport, (2c,c). Transport occurs only in a frac
tion of the driving period. By denotingtT as the duration of
a forward or backward tunneling passage, we have sin(VtT)
5c/b. For a given value ofb/c@1, the smaller the driving
frequencyV, the longer the tunneling timetT , and the more

FIG. 4. The transport amplitudes as functions ofv̄/V at the
specified value ofb/c55 to represent the strong driving regim
See text for the details.
v.
s

is

complete population transport. It is also interesting to not
that all three amplitudes in Fig. 4 behave similarly. Th
might result from the inward-outward recursive nature of t
formulation, Eqs.~6! and ~7!, that correlates many harmoni
amplitudesz2m11 together in the strong driving regime
Within each of the Rabi-resonance regions~i.e., 2m21
,v̄/V,2m11), the transport amplitude in the strong dri
ing regime behaves similarly asuz1u ~Fig. 1! or uz3u ~Fig. 2! in
the vicinity of its own corresponding Rabi resonance in t
weak driving regime. That is, the transport amplitude~e.g.,
Sz

max in the lower panel of Fig. 4! shows a frequency dip
wheng is sufficiently small~solid curves!, and increases a
g increases~dash curves! within a certain range. This indi-
cates that SR occurs in each of the Rabi-resonance reg
Applying the synchronization principle, the rate-matchi
condition for the strong (b/c@1) driving regime would be
g;tT

21;bV/c. However, the adiabatic passage would b
come the dominant mechanism at the low-frequency
strong driving regime, retaining a nearly 100% populati
transport asg increases further.

In summary we have reported a systematic study base
the analytical inward-outward recursive formulation@Eqs.~6!
and ~7!# for the quantum transport in a periodically drive
spin-boson system. Elucidated are the stochastic reson
and Rabi resonance in both the weak and the strong driv
regimes. Demonstrated are also the possibility of a large
plitude third-harmonic generation operated in the weak d
ing regime.
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